

Reusability in Governmental
Electronic Services

George Lepouras, Costas Vassilakis

D e p t . o f C o m p u t e r S c i e n c e a n d T e c h n o l o g y ,
U n i v e r s i t y o f P e l o p o n n e s e

I N T O D U C T I O N

Reusability in the everyday life is the capacity of using existing objects or

even concepts again in the same or other contexts. When applied to information

systems reusability is the capability of using the same parts of an application in

other applications or in other contexts. As defined by IEEE (IEEE, 1990)

reusability is the degree to which a software module or other work product can be

used in more than one computing program or software system. Although Rapid

Application Development environments such as MS Visual .NET TM (Visual .NET,

2005) and DelphiTM (Borland Delphi, 2005) have to some extent employed

reusability of components to aid the fast implementation of software applications,

the extent to which existing objects can be used again in the implementation of new

software systems is usually limited to basic building blocks of the interface. One

problem that hinders reusability of larger building blocks is the fact that once a

component which encompasses a number of objects is built it also encapsulates

algorithms (sets of well-defined instructions that perform a task) in the form of

code that define the functioning of the component. Tight coupling between the

program logic and the program code makes portability of the component between

applications difficult, when even small modifications in the program logic are

required. A second problem that hinders reusability is that even when the same

component can be directly used between applications, recognizing that such a

component exists and retrieving it, is not an easy task.

Reusability plays an important role in software development industry. If a set

of well-defined components is available, valuable resources can be saved by

utilizing again these components. As Rich Seeley observes (Seely, 2003) “as part of

that cost-saving message, Gartner recommends vendors and consultants focus on

reusability of Web services applications and components”.

B A C K G R O U N D
Electronic government is an area where a lot of development effort is lately

devoted to. Electronic government aims to promote the use of electronic means,

mainly electronic services to facilitate communication and interaction between

civilians or businesses and the government. According to the European Commission

(European Commission, 2000) “transaction services, such as electronic forms, are

perceived as the future of electronic government”.

An electronic transaction service is usually the electronic counterpart of

an existing service, implementing the business process logic involving the

filling and submission of forms containing the necessary data, the processing

of these data according to rules derived from laws and regulations and finally

the return of a reply to the user.

In order to implement transactional electronic services the collaboration

between a number of experts is required. To this end, reusability can help by

minimizing the effort needed for developing online transactional services.

Electronic government offers a prominent area for the application of reusability

since services offered to citizens from the same or different public authorities have

common parts that could be reused between their electronic counterparts. However,

in order to have effective reuse of components the two main problems previously

described have to be solved. Back in 1995 Dusik and Katwijk (Dusik, 1995)

identified the importance of a software development environment in which reuse, in

various forms, would be an integrated element. As Gall et al. (Gall, 1995) noted the

goal for reusability should be to create a software development process based on

the “use” rather than the “reuse” of standard components. The approach used during

the SmartGov project (SmartGov, 2001) involved the design and implementation of

a e-service development environment that would enable developers and domain

experts to use components that they or other users had created to create their own

transaction services.

S M A R T G O V A P P R O A C H

In contrast to simple information services, transaction services allow

users to submit their data and in response the Public Administration performs

a service such as the issuing of a certificate or the tax clearance. Transaction

services allow the user to perform common services online, implementing

thus one of the main objectives of the electronic government, namely the

facilitation of the interaction between civilians and businesses with the

public authorities.

To be able to implement reusability effectively one has to start by

decomposing a transaction service to its basic building elements. In the first

level an electronic service consists of a number of forms the user is required

to fill in. In the case of short documents one form may be enough, where for

lengthy documents more than one forms may be necessary. A form itself may

comprise of several areas, and each area commonly contains individual

fields, which are conceptually interrelated. The term field denotes the

equivalent of a paper form field, which in the electronic service may be

implemented as text input field, selection list, radio button group, etc.

For example, in a tax return form distinct areas may be dedicated to

collecting data regarding the taxpayer’s personal details, income and

expenditures. Form fields are the individual elements that citizens need to fill

in, either by direct typing of data in the area pertaining to the field (e.g.

typing 13765 in the input area of the Zip code field) or by selecting one of

the available field options (e.g. Yes or No for the Do you own the house you

live in? field). Fields usually come complete with labels , i.e. descriptions of

their purpose on the form. In some cases, the number of fields needed for

some purpose cannot be predetermined. As Shaw pointed out (Shaw, 1995)

90% of most applications code goes into system or administrative code, like

user interface code and back-end processing. Thus reusability of objects

combining the visual part of the field and the inherent processing logic is

crucial. Objects greatly increase software reusability and simplify the

software development process (Fan, 2000).

As noted earlier for a reusability approach to be effective two issues have

to be tackled: the tight coupling between the logic and the program code (i.e.

between what we aim to achieve and the code that implements it) and the

implementation of suitable mechanisms for retrieving components. The first

issue can be solved by providing facilities to customize components without

the need for completely rewriting the program code while the second can be

solved by offering mechanisms for locating components pertinent to the tasks

at hand and mechanisms for publicizing components to other user.

To facilitate these tasks a reusable component repository is introduced,

complemented with tools enabling users to browse, query, populate and

customize its contents. The repository approach is illustrated in Figure 1.

TSE management

TSE group management

TS forms management

Linking/Browsing

TS management

Searching

Reusable
component
repository

Composite search

Figure 1 – Introducing the reusable component repository

In the proposed approach the idea of a basic building block is introduced.

A Transaction Service Element (TSE) is the equivalent of paper based form

field. However, in contrast to a simple field, the TSE has more into it. A TSE

can have a multilingual label, the field for inputting data, validation checks

for checking the conformity of data to rules, instructions, documentation or

even legislation that applies on the field. The component repository holds

templates of TSEs and of groups of TSEs. The transaction element

management (TSE management) facility enables users to create templates of

reusable TSEs. A reusable TSE template contains exactly the same

information as an individual transaction service element, but is not directly

used in transaction services. Instead, users create instances of this template

and customize it to suit the needs of particular circumstances, since a TSE

need not appear identical in all its occurrences. For instance, a TSE

representing a person’s VAT number may appear in a tax return form as

“Taxpayer’s VAT number” in the area for personal details, as “Landlord’s

VAT number” in the section in which housing expenses are declared and as

“Employer’s VAT number” in the incomes section. Besides the changes in

labels, the validation checks associated with each occurrence may need to be

customized (e.g. the Taxpayer’s VAT number is always mandatory while the

landlord’s VAT number is mandatory only if housing expenses are declared;

the employer’s VAT number may need to be verified to correspond to an

enterprise, rather than an individual). Once a TSE template has been

instantiated and (possibly) customized, it can be used within a form of a

transactional service. Note that customization is still possible after the

establishment of the link between the instantiated TSE and the transactional

service. A similar approach is used for TSE groups, i.e. users create instances

of generic TSE groups, which can then appropriately customize for use in

services.

In the approach adopted by SmartGov it was not considered appropriate

to introduce the concepts of transaction service form templates and

transaction service templates, respectively, since the cases in which whole

forms or whole transaction services will be reused are less frequent than the

cases in which TSEs or TSE groups will be. Instead, for transaction service

forms and transaction services a clone facility has been provided, which

creates exact duplicates of the source object. The developer can then

customize any component of the cloned object.

So far, the notion of the reusable component repository has been

described. However, the presence of a repository containing customizable

objects does not automatically guarantee the effectiveness of the reusability

approach. It has to be complemented with tools that will allow efficient

management of the components. As already stated, for such a repository to be

useful it is of the essence to provide efficient navigation and searching

facilities that will allow users to locate the elements they want to view or

modify. Moreover, when new services are created or existing services are

modified, it is very desirable to be able to reuse existing components

implement the needed functionality. For instance, most services have a

special form or form area in which the personal details of the service user are

displayed; when creating a new service, it is beneficial to re-use this form

from en existing service, since development resources and time are saved,

testing has already been done and uniformity across services is achieved.

Braga et al. (Braga, 2001) have proposed the use of an ontology to aid

retrieval of components that exist in distributed repositories. As defined in

(Noy, 2001), an ontology is a formal explicit description of concepts in a

domain of discourse (called classes or entities), properties of each concept

describing various features and attributes of the concept (called slots, roles or

properties), and restrictions on slots (called facets or role descriptions).

In the SmartGov approach a simpler yet efficient navigational scheme

was used based on taxonomies. According to WhatIs?Com Online

Encyclopaedia (WhatIs, 2005) a taxonomy is a classification according to a

pre-determined system, with the resulting catalog used to provide a

conceptual framework for discussion, analysis, or information retrieval. The

basic difference between an ontology and a taxonomy is that an ontology

defines not only the concepts (the classes) but also their properties, as well as

possible restrictions on how the classes and properties can be instantiated. In

a taxonomy, concepts are classified hierarchically, with each concept being a

separate node in the hierarchy. Nodes appearing in the lower level of the

hierarchy are known as leaf nodes. Under this scheme, an organisational

taxonomy is built with broad categories at the first level, which are refined

into smaller categories at the second level and so on, until the desired level

of detail (usually 5-7 levels) (Fraser, 2003). Platform users that create

elements can link them at any category node, either leaf or non-leaf; linkage

of elements with nodes can also be modified at a later stage. Users needing to

locate an element, start from the top node of the taxonomy and drill down the

categories (Figure 2). Once an element is reached and displayed, the

navigational facilities should allow the platform user to move to any other

element linked to the current one; for example, if a field is displayed, the

user should be able to view the form(s) that this field appears on, the groups

it participates in, the validation checks it is involved in, examples illustrating

its usage, legislation pertaining to it and so on. The information enabling the

platform to display these links has been already entered by the relevant

stakeholders, either as an indispensable part of the element definition (e.g.

when defining a form the user selects the fields that should appear on it; the

definition of a validation check references the involved fields and so forth),

or as express linkage (e.g. linkage of legislation and documentation to

elements). Linkage may also be implicit and derived by the context of actions

– e.g. if the user selects the “Create an example” action when editing a form,

the example will be linked with the form being edited.

Figure 2 – Taxonomies for navigation in the repository

Finally, the organisation may want to define multiple taxonomies, as is

the case in Figure 2. With multiple taxonomies, different classification

schemes can be supported to facilitate the work of users with diverse

expertise or interests. In the example of Figure 2, two taxonomies are used:

the “elements by function” taxonomy is addressed to domain experts

specialising on different taxation items, and the “elements by legislation”

taxonomy, addressed to legal advisor. While support of different taxonomies

is beneficial for users that try to locate elements, it places an extra burden for

element authors, since a link must be established for each distinct taxonomy.

Semi-automatic classification schemes may alleviate this problem.

The search mechanism allows users to enter patterns, which are matched

against the contents of the repository, and the components that qualify with

respect to the matching are included in the result. The search pattern may

include free text search, either in all sections of elements or in specific ones

(e.g. labels, descriptions, author, keywords, content [for document-type

elements only, i.e. examples, documentation and legislation] or any

combination); users may also designate and the type of the desired result

(e.g. fields only, or examples and legislation).

One issue that must be addressed with searching within the repository is

that standard search engines examine individual objects whereas when

searching the repository the information stated in the search pattern may be

dispersed across several repository elements, perceived however by the

querying user as a single entity. For instance, if the user enters a query

requesting objects containing all the words “Name”, “Surname”, “Address”

and “Id number”, there may exist no single object containing all these words

and, consequently, a standard search engine would produce no results.

However, users would expect a field group “Personal details” to be retrieved

by the query, because its elements collectively satisfy the search criteria. In

order to tackle this issue, a modified search engine should be used for

searching the repository. The modified search engine flags that an element

matches a pattern if either the element itself or any of its contained elements

matches the pattern. The “containment” relationship is defined as follows:

transactional services contain forms; forms contain form element groups

and/or individual form elements; and form element groups contain form

elements. The containment relationship is also transitive, e.g. if a form

element is contained in a form, it is transitively contained in any

transactional service containing the specific form. Finally, validation rules,

examples and documentation are directly “contained” in any element they are

linked to. Another complementary facility that can be used during searching

is a dictionary of synonyms. If for example, the user searches for “Surname”

and an object with description “Last Name” exists, the dictionary can help in

retrieving this object.

F U T U R E T R E N D S
Although the use of taxonomies can help in managing and reusing code,

an ontology can offer a richer and more complete image of the organization

which produces the service. To this end, know-how acquired from the

SmartGov project can be used to incorporate ontologies as a mechanism for

semantically managing reusable components. Furthermore, since the

organization can change in time, a versioning system for the ontology can be

introduced which will allow finding the elements that become obsolete as

well as the history of the changes.

C O N C L U S I O N

It is widely recognized today that reuse reduces the costs of software

development (Mili, 1995). However, in order to efficiently implement

reusability, a system is required that will enable the management of code

fragments according to their logic. In the framework of the SmartGov project

a knowledge based platform was implemented that allows semantic

classification of transactional service elements, fast and easy copying and

modification of existing code and management of the service logic by means

of taxonomies. The proposed approach has been proven (SmartGov

Consortium, 2004) to offer a viable and efficient solution to implementing

transaction services by means of reusable components.

R E F E R E N C E S
Borland Delphi Home Page (2005). Retrieved November 17, 2005, from

http://www.borland.com/delphi/

Braga, M. M. R., Mattoso, M., Werner, M. L. C. (2001). The Use of

Mediation and Ontology Technologies for Software Component Information

Retrieval. Proceedings of ACM SSR’01 , Toronto, Ontario, Canada, 19-20

Dusink, L., Katwijk, J. (1995). Reuse Dimensions. Proceedings of ACM

SSR ’95, Seattle, WA, USA, 137-149

European Commission (2000). Public Sector Information: A Key

Resource for Europe, Green paper on Public Sector Information in the

Information Society , Retrieved November 17, 2005, from

http://www.cordis.lu/econtent/publicsector/greenpaper.html

http://www.borland.com/delphi/
http://www.cordis.lu/econtent/publicsector/greenpaper.html

Fan, M., Stallaert, J., Whinston, A.B. (2000). The adoption and design

methodologies of component-based enterprise systems, European Journal of

Information Systems , 9(1), 25-35

Fraser, J., Adams, N., Macintosh, A., McKay-Hubbard, A. (2003).

Knowledge Management Applied to e-Government Services. Proceedings of

the KMGov2003 Workshop, Rhodes, Greece.

Gall, H., Jazayeri, M., Klosch, R. (1995). Research Directions in

Software Reuse: Where to go from here? Proceedings of ACM SSR ’95 ,

Seattle, WA, USA, 225-228

Institute of Electrical and Electronics Engineers (1990). IEEE Standard

Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries.

New York, NY

Mili, H., Mili, F., Mili, A. (1995). Reusing Software: Issues and Research

Directions, IEEE Transactions on Software Engineering , 21(6), 528-562

Noy, F. N., McGuiness, L. D. (2001). Ontology Development 101: A

Guide to Creating Your First Ontology, Stanford Knowledge Systems

Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics

Technical Report SMI-2001-0880

Seely, R. (2003). Gartner: Web services projects roll along, AdMag.com,

Retrieved November 17, 2005, from http://www.adtmag.com/article.asp?

id=8076

http://www.adtmag.com/article.asp

Shaw, M. (1995). Architectural Issues in Software Reuse: It’s Not Just

the Functionality, It’s the Packaging, Proceedings of ACM SSR ’95 , Seattle,

WA, USA, 3-6

SmartGov Consortium (2004). SmartGov Project D91 - Evaluation of

project results. Retrieved November 17, 2005, from http://www.smartgov-

project.org/ index.php? category = results

SmartGov (2001). IST-2001-35399, A Governmental Knowledge-based

Platform for Public Sector Online Services, Retrieved November 17, 2005,

from Project Website: http://www.smartgov-project.org/

Visual Studio Home Page (2005). Retrieved November 17, 2005, from

http://msdn.microsoft.com/vstudio

WhatIs (2005) IT Encyclopedia and Learning Center. Retrieved

November 17, 2005, from Home Page http://whatis.techtarget.com/

T E R M S A N D D E F I N I T I O N S
Clone (function): a function which copies all aspects of an existing object including

visual appearance, parameters and links to code affecting its behavior, creating thus an

identical copy of the original object.

Field: The term field denotes the equivalent of a paper form field. Although in a paper

based form a field is usually a box that the user has to fill in, in an electronic service the

same field may be implemented as text input field, selection list, radio button group, etc.

http://www.smartgov-
http://www.smartgov-project.org/
http://msdn.microsoft.com/vstudio
http://whatis.techtarget.com/

Ontology: An ontology is a set of concepts for a certain domain, connected together with

inheritance relationships and each of them having a set of attributes.

Pattern (search): a string containing alphanumeric and possibly special characters (such

as wildcards) used as a target to search for. In the simplest case the string contains a word

(or part of it), while in other cases it can contain multiple words or regular expressions.

Reusability: The extent to which a software module of an existing application can be

used in other applications and/or in other contexts.

Reusable component repository: A repository that can hold reusable components. To be

usable the repository is complemented with tools that allow the managing of components

(i.e. the storing, categorizing, retrieval and dissemination of components).

Software module: a software component that performs a well defined function and is

independent of other components.

Taxonomy: A hierarchical classification of concepts for a certain domain. The main

difference between a taxonomy and an ontology is that the taxonomy lacks the set of

attributes for each concept. In a taxonomy concepts are classified hierarchically, with

each concept being a separate node in the hierarchy. Nodes appearing in the lower level

of the hierarchy are known as leaf nodes.

Transaction Service Element (TSE): Transaction Service Element (TSE) is the

equivalent of paper based form field. However, in contrast to a simple field the TSE has

more into it. A TSE can have a multilingual label, the field for inputting data, validation

checks for checking the conformity of data to rules, instructions, documentation or even

legislation that applies on the field.

TSE template: A TSE template is the equivalent to the a class definition in object

oriented programming. It can be instantiated to a TSE or modified to create a new TSE

template.

