Context and Adaptivity-Driven Visualization Method Selection

Maria Golemati, Costas Vassilakis, Akrivi Katifori, George Lepouras, Constantin Halatsis
Chapter in "Intelligent User Interfaces: Adaptation and Personalization Systems and Technologies"

Abstract:
Novel and intelligent visualization methods are being developed in order to accommodate user searching and browsing tasks, including new and advanced functionalities. Besides, research in the field of user modeling is progressing in order to personalize these visualization systems, according to its users' individual profiles. However, employing a single visualization system, may not suit best any information seeking activity. In this paper we present a visualization environment, which is based on a visualization library, i.e. is a set of visualization methods, from which the most appropriate one is selected for presenting information to the user. This selection is performed combining information extracted from the context of the user, the system configuration and the data collection. A set of rules inputs such information and assigns a score to all candidate visualization methods. The presented environment additionally monitors user behavior and preferences to adapt the visualization method selection criteria.

Note: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
AttachmentSize
PDF icon iui-chapter.pdf216.77 KB
Research area: 
Year: